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Konlinear interaction between transverse disturbances and longitudinal rolls has 
been investigated for flow in an inclined slot with a heated lower wall when both 
modes of instability occur at nearly the same value of the control parameter. This 
condition is shown to be possible for a fluid with Prandtl number greater than 
0.263897. For slightly supercritical values of the Rayleigh number (R)  when the 
critical Rayleigh number for longitudinal rolls R t  is somewhat less than that for 
transverse stationary rolls, RE, and for transverse travelling waves, RT, longitudinal 
rolls occur first and then remain stable as R is increased beyond R! or RT; no mixed 
mode state occurs. In  contrast, if RE or RT is slightly below Rt,  pure transverse modes 
exist for only a relatively small range of R beyond RF or RT. Thereafter, a three- 
dimensional mixed mode state occurs well before R,L is reached, i.e. three- 
dimensionality sets in on a subcritical basis. As R approaches R t ,  the contribution of 
the transverse mode decreases continuously until a pure longitudinal roll state 
emerges for R slightly greater than R t .  Mixed mode convection is also investigated 
for a special choice of parameters when three modes, namely transverse stationary 
rolls, transverse travelling waves and longitudinal rolls, become unstable simul- 
taneously. Longitudinal rolls again emerge as the stable supercritical state. 

1. Introduction 
Nonlinear interactions between transverse rolls and longitudinal rolls in Ray- 

leigh-BQnard convection when a mean shear exists have recently attracted increasing 
attention. For a horizontally unbounded layer, longitudinal rolls with axes in the 
flow direction are the most unstable mode. Richter (1973) considered a situation for 
the unbounded case where two-dimensional rolls aligned in one direction are initially 
excited by means, say, of  thermal imprinting as first developed by Chen & Whitehead 
(1968), and so dominate the initial state of convection. A shear flow is then 
superimposed in tthe direction perpendicular to  the axis of the two-dimensional rolls, 
which are now called transverse rolls. Deriving coupled amplitude equations and 
integrating numerically, he demonstrated that after superposition of the shear flow 
the amplitudes ofthe transverse rolls decrease while those of longitudinal rolls (given 
small initial values) increase. After a sufficiently long time, the transverse rolls 
become negligible, thereby giving rise to a longitudinal roll state. He therefore 
concluded that the transverse rolls are unstable to longitudinal rolls for any value of 
the Reynolds number. Richter & Parsons (1975) confirmed experimentally this 
process of transition between transverse and longitudinal rolls. 

With the addition of sidewalls, however, transverse rolls are more unstable at low 
values of the Reynolds number (Re). Hence there is a cross-over regime of Re 
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(depending on the aspect ratio) where both modes are important on a nonlinear basis. 
The idea of a cross-over value of Re, say Re*, was introduced by Luijkx, Platten & 
Legros (1981 ; see also Platten & Legros 19S4) for the linear problem. Muller, Lucke 
& Kamps (1989, 1992) and Brand, Deissler & Ahlers (1991) considered channel flow 
by using envelope equations. Brand et aE. considered interaction between transverse 
and longitudinal rolls. They obtained pure transverse rolls a t  relatively low values of 
Re and high values of the Rayleigh number but pure longitudinal rolls for the 
opposite extreme, in agreement with the linear results. However, Brand et al. also 
obtained a mixed mode composed of these two kinds of roll for some range of 
parameters. Ouazzani, Platten & Mojtabi (1990) had previously observed a mixed 
mode state experimentally. Therefore, it would seem that the concept of a unique 
value of Re* is an artifice of the linear problem; finite-amplitude states can coexist 
and give rise to mixed mode convection. It is therefore more accurate to  talk about 
a cross-over regime rather than a cross-over value of Reynolds number. 

Another example is an interaction between transverse rolls and near-aligned rolls 
in a vertical narrow gap between co-rotating concentric cylinders at different 
uniform temperatures. Kropp & Busse (I991 a)  derived coupled amplitude equations 
for transverse rolls and near-aligned rolls and obtained typical bifurcation diagrams 
in which pure transverse rolls, mixed modes, and pure near-aligned rolls exist stably 
as a sequence of bifurcations. 

In  the case of pure Rayleigh-BBnard convection in a circular cylinder of finite 
aspect ratio, different modes become critical depending on the aspect ratio. It should 
be mentioned that Rosenblat (1982) considered an interaction between different 
critical modes, derived coupled amplitude equations, and obtained bifurcation 
diagrams involving a transition from a pure mode to a mixed mode. 

In this paper, the case of flow in an inclined slot with a heated lower wall will be 
discussed. For the case of a vertical slot, transverse stationary rolls exist for P < 
12.454256 = eT, while a pair of transverse travelling waves exist for P > PtT where 
P is the Prandtl number; see e.g. Bergholz (1978). Fujimura & Mizushima (1991), 
Kropp & Busse (1991 b ) ,  and Fujimura (1992) investigated a nonlinear interaction 
between the stationary mode and the travelling waves on a weakly nonlinear basis 
for P z PET. On the other hand, longitudinal rolls exist for a relatively large 
inclination angle (S is defined as the angle from the vertical in this paper). A cross- 
over between transverse and longitudinal disturbances exists as shown by Hart 
(1971) and Korpela (1974). According to their comparisons, and also to that of 
Hollands & Konicek (1973), between theoretical predictions and experimental results 
on this problem, the onset of longitudinal rolls is predicted well by the linear stability 
theory while the onset of transverse rolls is not predicted so accurately. Hart 
conjectured that the latter disagreement might be due to the lack of resolution in 
detecting the onset and also perhaps due to the non-parallelism of the basic flow 
resulting from end effects of the experimental apparatus with a finite aspect ratio. 
Unfortunately, these experimental results do not indicate any interaction between 
longitudinal rolls and transverse ones, although one might expect such interaction 
just as for the case of Ouazzani et al. (1990). 

More recently, Kirchartz & Oertel (1988) carried out both a numerical simulation 
and an experimental observation of this problem in a finite-aspect-ratio box (finite 
in both width and length). They concluded that within a certain parameter range a 
stable mixed mode exists although the mode is composed of longitudinal rolls and 
transverse rolls resulting not from a shear instability but from endwall effects. 
Shadid & Goldstein (1990) recently reported experimental results for a finite-aspect- 
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FIGURE 1. Coordinate system of the inclined fluid layer. 

ratio box. Although they demonstrated the transition process from transverse to 
longitudinal rolls with their flow visualization, they did not note the existence of a 
mixed mode. 

The objective of the present paper is to clarify which modes can stably exist in the 
case of two-mode interaction between transverse disturbances and longitudinal rolls. 
We classify all the possible equilibrium solutions and also consider their linear 
stability. We further classify the bifurcation characteristics in the cross-over regime 
between three modes, i.e. a transverse stationary roll, a pair of transverse travelling 
waves, and a longitudinal roll, all of which can be critical simultaneously for a 
suitable choice of parameters. 

After describing the mathematical formulation in $2,  we discuss the linear stability 
characteristics in $3, especially in regard to the cross-over feature. We derive the 
coupled amplitude equations for the interaction between three modes in $4 and 
obtain equilibrium solutions and their linear stability for two-mode and three-mode 
cases in $$5 and 6, respectively. In  $ 7 ,  we draw some conclusions. 

2. Mathematical formulation 
We take the coordinate system (x, y, x )  in which two parallel walls are located at  

z = +@, and the x-axis is aligned in the direction parallel to the sidewalls. Uniform 
temperatures on the walls are maintained a t  T = T, TiAT at z = +H as shown in 
figure 1. 

We non-dimensionalize all the quantities by taking the characteristic temperature 
AT, characteristic length H ,  characteristic velocity, gyH2 ATlv, and characteristic 
time H 2 / v .  As a result, we obtain the following system of equations for velocity v and 
temperature T :  

P-'R @ / a t  + ( v -  V) v]  = -Vp+  T cos Sex+ T sin Se, +V2 v ,  

(2.1) R [aT/at + ( v .  v) r ]  = v2 T ,  
v . v  = 0 ,  

subject to boundary conditions 

v = O ,  T = T +  at z = + 1  - 2 ,  



at(&,-$,)+ 0Ta,(Q,-V",)+ 06, \ 

a, v w -  ua, v2c- vd, 
= PR-1 [!P, cos 8+v2(ii, 4 , ) l  -a,@. v) Q + a,(& v) 8, 

= PR-' [Vi 9 sin 6-  !Pxz cos 13+ V4 63 
- {vyfi. v) zir - az[a,(6. v) Q + a,(;. v) .; + az(8. v) c]), 

a, 7'+ u!Pz + Zi, = R-' V2 !f'- (6 -V)  f', 

3. Linear stability characteristics 

linear stability characteristics by the normal mode analysis assuming that 
Let us denote the disturbance as [&, 4, 6, f'lT E Y(x, y, x ;  t ) .  We investigate the 

> (3.1) tp = qX) eia(x-ct)+iPu 

where @ = [ u ( z ) ,  w(z), w(z),  T(x)lT, a is the wavenumber of a transverse disturbance, 
and p is the wavenumber of a longitudinal disturbance. 

We only consider a transverse disturbance and a longitudinal disturbance because 
Gershuni & Zhukhovitskii (1969) demonstrated that oblique modes are never the 
most unstable. The disturbance equations for longitudinal rolls (L) are 

S$,w-P2sin6T= 0,  CW-R- 'S(~,T=O, (3.2) 
while the disturbance equations for transverse stationary rolls (S) or transverse 
travelling waves (T) are 

[ia( 0- c)  S,,, - i a V  - PR-l S&j w + PR-l(a2 sin S+ ia D cos S) T = 0, 

subject to the homogeneous boundary conditions w = Dw = T = 0 at z = ++, where 
S,,, L D2-a2 ,S (P)  = D2-p2, and D = d/dx. 

In order to obtain the critical condition for transverse stationary rolls (a:, RE) and 
that for transverse travelling waves (a:, RT), we set Im c = 0 and aR/aa = 0 from the 
start while ignoring the third criticality condition a2R/i3a2 > 0. After splitting (3.3) 
into real and imaginary parts, imposing these two conditions, and expanding (w, T) 
and (awlaa,  i3Tlaa) as 

} (3.3) 
[ia( 0 - c )  -R-l S,,,] T+ w = 0, 

(2 .5 )  
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FIGURE 2. Critical Rayleigh number for longitudinal rolls (dashed line) and for transverse 
stationary rolls (solid lines). A cross-over point is where two modes share the same critical Rayleigh 
number. 

6 

\ T  
' '\ 

0.1 I I I I 1 1 1 1 1 1  I I I 1 l l l t l  I I 9 ' " ' L  

0.1 1 10 100 1000 

P 
FIGURE 3. Cross-over points among different modes (solid lines). Label S denotes the region in 
which a transverse stationary roll gives the critical condition, T denotes the one in which transverse 
travelling waves give the critical condition, and L denotes the one in which a longitudinal roll gives 
the critical condition. Dashed lines denote extensions of solid lines, 

we reduce the linear system (3.3) subject to homogeneous boundary conditions to 
simultaneous nonlinear algebraic equations for [w@), w?)JT, [!Pn), c,, ac,/aa, a,, 
and R,. Here Tn(2z) denotes the Chebyshev polynomial of the nth degree and the 
factors and (i-2) are involved in the expansion functions in order that 
the functions satisfy the boundary conditions automaticdy. To solve the equations, 
we utilized the Newton method. The critical condition for longitudinal rolls is 
independent of the Prandtl number and is simply given as 

/3 = 3.1163236, R,L = 1707.7618/sin 6. 

We depict RE as a function of the inclination angle 6 for several values of P in figure 
2. At the intersection between the curves for the longitudinal rolls, R t ,  and the curves 
for the transverse rolls, RE, the longitudinal roll and transverse roll share the critical 
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P 6 R 

12.420013 1.006547 4 97 2 16.060 
1.252 368 2 78 136.236 
1.795 4436 54506.618 

1 13.109803 75 29.2181 
0.7 18.824115 52 92.6923 [ 2f'20013 

12.420 013 
12.431822 
12.441 431 
12.447 841 
12.454 256 

T-L 100 

500 

S-T 

1.0065474 
1.849 781 6 
1.363 9647 
0.959288 9 
0.587 383 3 

1.0065474 
0.7 
0.4 
0.2 
0.0 

97 216.060 
52 905.997 
71 744.366 

10 2004.84 
16 6585.02 

97 216.060 
97 466.8 17 
97715.228 
97 882.506 
98051.132 

TABLE 1 .  Cross-over points for typical Prandtl numbers. 

condition. For P 2 2, the curves for RZ show discontinuity and many-valuedness for 
65" < 6 < 70°, corresponding to the closed disconnected neutral curves discussed by 
Chen & Pearlstein (1989). 

We summarize the distribution of the cross-over points between L and S, between 
L and T, and between T and S in the (P, &)-plane in figure 3. We find that the S mode 
always dominates for P < 0.263 897 if S < 90". The same diagram has been obtained 
by Korpela (1974). For P % 1, our diagram for L-S has the asymptotic behaviour 
6 - 12.533P-1."019 while Korpela's result does not have such a clear asymptote for 
P 9 1. The diagram for L-T shows 6 - 17.156P-0.54a99 for P 9 1 .  The curve for T-S 
is almost vertical but slightly inclined with very large negative slope. The Prandtl 
number on this curve tends to P = 12.454256 as 6+0. These three curves intersect 
a t  (P,, S,, R,) = (12.420013, 1.0066474, 97216.060) which is the condition for three- 
mode interaction. We tabulate some typical data on these curves in table 1.  

4. Weakly nonlinear reduction of amplitude equations 
We describe only the essentials of how to derive the coupled amplitude equations 

on a weakly nonlinear basis in the neighbourhood of the point at which three 
modes, (S), (T), and (L), simultaneously bifurcate. The derivation for the two-mode 
interaction is included in the following as a subset. We expand Yabout the crossover 
point (Pc, S,, R,) in P, R i l  - PR-l = e2, PL1 -P-' = s2P ,  and 6- 8, = e's" as 

Y = (SV, + e3yI(11) + . . .) E ,  + (eY2 + e3 Yp) + . . .) E, + (eY. + e3 V(31) + . . . ) E, 

+ ( e Y 4  + e3 + . . . ) E, + 2 YmnBm En + h.0. t. + c.c., (4.1) 

where E n -  = eiorn(s-c=t)+ibfiy and E-, = E;,. We label the pair of transverse travelling 
waves as n = 1, 2, transverse stationary rolls as n = 3, and longitudinal rolls as 
n = 4 so tha t  a, = a,,P1 = /3, = 0, P3 = 0, and a4 = 0. Moreover, c, = c4 = 0, and 
c, = - c z .  For simplicity, let 

m,n--4 

a,+a,+ ... = a,, ,,,, p,+p,+ ... = p,, ,,,, and a,c,+a,c,+... = (ac)m,n, 
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For later convenience, we introduce the following linear operators 
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-i/3,,P,R;1 cos S, -p;n iPm n D 0 

(i 

0 Lfmn P, Ri l (ykn  sin S, + iamn D cos Lmn = 

0 r, -i(ac)mn +ia,, U-R;'X,, 

Lrnn,s 

-amn/3mn f akn 6 iPmn a ip,, P, R;' sin 6, 
0 0 0 
0 ia,, USrnn - ia,, l? P, R;I(yk, cos S, - ia,, D sin 
0 0 ia,, f 

-iPmn cos S, -(-i/3;smn iarnnsrnn 0 0 0 0 

0 - Sk,, y&, sin 6, + iamn D cos 
0 0 - Pi1 s,, 

Lrnn,P-'R = 

where - - 
9,, = i[a,, U -  (ac),,] S,, - ia,, U" - P, R i l  S;,, 

Am, = ( ~ C ) , , . - U ~ ~  U - i P c R ~ ' S m n ,  
7kn = a;,+&,, l7= aU/as, s,, = D~-Y",. 

We make use of the method of multiple scales so that we set 

a a t , = e 2 " t ,  n = 0 , 1 , 2  ,,.. - - 
at j=o at, 
- (4.2) 

In  particular, t, = 2 t. At O ( E )  we obtain the linear equations 

Lj Yj = 0, j = 1,2 ,3 ,4 ,  (4.3) 

Yj = A &  ...) qz). (4.4) 

which are consistent with either (3.2) or (3.3). The solution !Pi is obtained in the form 
of 

The eigenfunction Gj(z) is normalized such that wj(0) = 1. 
Derivation of the equations a t  O ( 2 )  is straightforward. We note here that the 

mean flow distortion !Po must satisfy the constant mass flux condition in order to be 
relevant to flow within a slot with endwalls. 

At O(e3) ,  we obtain four inhomogeneous equations of the form of 

(4.5) 

where CT, = L!,p-~ - 8Lj, +pL,, and NPkkj denote the nonlinear term whose explicit 
form is not listed here. The solvability condition for yl) yields coupled amplitude 
equations of the form of 
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A$G) 4.241 9274 x lo1 A y )  2.6158226 
A p  -5.001 907 1 x loA5 hip’ 2.351 5549 x 
A$@ 1.7417820~ A:@ 1.071 681 6 x 
A-333 - 8.385983 1 x lo4 A-384 3.033217 6 x lo4 

-2.3307004 x lo7 A-444 -2.8534022 x lo4 L 4 3  

TABLE 2. Coefficients involved in coupled amplitude equations for the S-L interaction 
evaluated at (P ,R ,  6) = (7, 54506.618, 1.7954436). 

Real part 

7.4993746 x lo-’ 
5.594 223 6 x 
1.929 7902 x 

9.7692758 x 10’ 

1.9549109 x 10-1 
2.7248285 x lo-’ 
1 .1443968~ lo-, 
5.0048593 x lo4 

-4.0124209 x lo4 

-8.270 121 2 x 103 

- 1.057 1395 x 10’ 

Imaginary part 

3.243911 3 x 10-1 

1.843 229 7 x 
9.7993298 x lo3 

-5.0040034 x lo3 
-9.2328355 x lo7 

-3.2290664 x 

0 
0 
0 
6.6524787 x 
0 

TABLE 3. Coefficients involved in coupled amplitude equations for the T-L interaction 
evaluated at (P,R,S) = (100, 71744.366, 1.3639647). 

where 

and &*(z) = [0, 0 , 8 ,  mT is the adjoint function of aj(z) defined by 

-P, Ril Sj” 8+ 5? = 0,  P, p; 3 sin 8, -Sj p = 0 (4.7) 

for the longitudinal roll, while 

1 (4.8) P, ~;1(aj” sin 8, - ia, cos 8, D) 8 + [ - i(ac)* + ia, 8- R-’ SI P = o J 
for the transverse disturbances, both equations being subject to homogeneous 
boundary conditions. 

Coefficients involved in (4.6) are evaluated numerically at P = 7 ,  100, and 
12.420013 and are tabulated in tables 2, 3, and 4, respectively. 

[ia, 08, - i ( a ~ ) ~  8, + 2ia, P D  - P, R i l  Sj”] d + = 0, 

5. Bifurcation for two-mode interaction 
In the following sections concerning analysis of the amplitude equations, for 

simplicity we utilize the original timescale t instead of the slow ones, t,, n 2 1.  Let 
us start with the interaction between transverse stationary rolls and longitudinal 
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Real part Imaginary part 

A\G) = A(G)*  3.0878922 x lo-' 2.8270393 
/y = A!)* 3.5754725 x -2.2486003 x lo-? 
nib) = A p *  5.5561793 x 2.4748060 x 

-3.9807707 x lo4 2.900283 1 x lo4 
A-22, = ~L 4.481 7678 x lo3 -2.4937499~ lo3 

= At332 8.682 1267 x lo3 2.0243108~ lo4 
L 4 ,  = A?,,, -6.8324086 x lo7 -1,6135646 x lo7 

A%' -5.1748696 x 0.0 
Af) 1.8041695 x 0.0 
'-113 = 6.674201 6 x lo4 7.5087195~ lo4 

L,, = 2 2 2 2  

A F )  4.2599543 x lo1 0.0 

L 3 3  -1.7504458~ lo5 0.0 
A-443 -7.0672793 x lo7 0.0 
A p  1.5 19 459 5 0.0 
A p  2.4109890 x 0.0 
A p  1.1048845~ lo-' 0.0 
'-114 = A_*224 3.1731141 x lo5 1.1368121 x lo1 
A-334 3.2400366 x lo4 0.0 
A-444 -5.2464715 x lo4 0.0 

TABLE 4. Coefficients involved in coupled amplitude equations for interaction among the S, T, 
and L modes evaluated a t  (P,R,S) = (12.420013, 97216.060, 1.0065474). 

rolls in the neighbourhood of the cross-over region. If we set &Aj = uj(t)eisct) and 
e2& = hi, the amplitude equations for A ,  and A ,  are written in the form 

4 

j=3 

4 

A, + 2 A+, a;), 2 = u4 
dt j = 3  

We obtain the equilibrium solutions for (5.1) by setting the left-hand sides of (5.1) 
to  zero. Evaluating the eigenvalues of the Jacobian matrix about the equilibrium 
solutions, we obtain the stability conditions for the solutions. For some of these 
calculations we utilized the computer algebra system REDUCES. The results are as 
follow8 : 

( a )  pure transverse roll P, 

a: = -h3 /L3 , , ,  a4 = 0, 
which is stable if A_,,, < 0 and A, -A3  A-334/h-333 < 0 ; 

( b )  pure longitudinal roll P, 

a,  = 0, a: = -h4/A-444, (5.3) 

whose stability condition is given by A_,,, < 0 and A3-A4h-443/A-444 < 0;  

(c )  mixed mode M 
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5 , , , , 1 , , , , 1 , , , , , , ~ , , 1 , ,  I ,  

( x (a) 

R 

R 
FIGURE 4. Bifurcation diagram for two-mode interaction between transverse stationary rolls and 
longitudinal rolls. Letters attached to each branch denote the different types of stable equilibrium 
solution. Letteys in a bracket denote unstable equilibrium solutions. P = 7 ;  (a) S = 1.89", ( b )  6 = 
1.69". 

Typical bifurcation diagrams are shown in figure 4 for P = 7 .  Linear stability 
boundaries A3 = 0 and A, = 0 provide a basis on which to classify the possible 
equilibrium solutions. Let 

(5.5) 

at which A, and A, vanish simultaneously at one value of R. Here (P, e") denotes any 
point on the curve of figure 3 for the S-L interaction. In the neighbourhood of 
P = 7 ,  

This is the local expression of the cross-over point between the (S) mode and the (L) 
mode in figure 3. Moreover, we denote R,, R,,  R,, and R, as the Rayleigh numbers 

z -0.021 15+ 12.716P-l. 
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R ( x 103) 
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FIGURE 5 .  Bifurcation diagram for two-mode interaction between transverse travelling waves 
and longitudinal rolls. P = 100; (a) 6 = 1.464', ( b )  8 = 1.264". 

a t  which A$p, = 0, AiM = 0 ,  AiPL = 0, and A& = 0 hold, respeetively ; see figure 4. By 
imposing these conditions in (5.2)-(5.4) and substituting 

A5 = €Z[AjG) + 8Ay) $. P'A'P' 3 1  

= h ( G )  p, RL1 - pR-1) + A(*) 5 ( - 6,) f AjP)(PiZ -P+), 
5 (  

we obtain explicit forms of R, for n = 1, 2, 3, 4 which can be summarized as 

We do not list the numerical values of the coefficients b y ) ,  b p ) ,  and b p ) ,  but they are 
available from the authors. 

Now if 6 > a,,, P, is stable for R, > R 2 R,, and P, is stable while P, is unstable 
for R 3 R,. If S < on the other hand, P, is stable for R, < R < R,, M is stable 
while Ps is unstable for R, < R < R,, M is stable while P, and P, are unstable for 
R, < R < R,, and P, is stable while P, is unstable for R 2 R,. The results are valid 
for coefficients in table 2. Qualitatively the same bifurcation characteristics are 
obtained for P = 0.7 and we do not show them here. 

R, = b ~ ) / ( S + b ~ ~ P - ' + t @ ) ) .  (5.6) 
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Before discussing the physical implications of the above bifurcation characteristics, 
we describe the bifurcation of solutions for the interaction between transverse 
travelling waves and longitudinal rolls that can occur for P > PzT. Setting d j ( t )  = 
aj(t) ei’jlct) for j = 1 ,  2, 4 yields coupled amplitude equations of the form 

da,/dt = a l (c l+c l l la~+c ,21a~+c441a~)  = alp,, 

da,/dt = a2(cl + cZz1 u: + clll a: + c441 a:) = a2p2,  

da4/dt = a4(c4 + ~ 1 1 4  a: + cl14 a: + c444 a:) = a4p,, 

where ci = Re As for j = 1, 2, 4, and ckkj 5 Re A-kkj for Ic = 1, 2, 4. The possible 
equilibrium solutions are : 

(5.7) I 
(a )  travelling wave P, 

a; = -c1/clI1, a2 =a4 = 0, 

which is stable if dpl/i3a; < 0, p 2  < 0, and p ,  < 0 ;  

(b )  pure longitudinal roll P, 
a1 = a2 = 0, a: = -c4/c444, 

which is stable if 8p4/aa: < 0, p, < 0, and p 2  < 0 ;  

( c )  standing wave SW 

a: = a; = -cl/(c111+c221), a4 = 0, 

whose stability condition is given by 

(d)  mixed mode M* 

2 - c 1 c 1 1 4 - c 4 c l l l  , a2 = 0, a4 - ‘4 ‘441 - ‘1 ‘444 a: = 
det14 det14 

, 

(5.9) 

(5.10) 

(5.11) 

whose stability condition is given by p ,  < 0 and 

Re { ~ ~ ~ ~ a ~ + e ~ ~ ~ a , 2 + [ ( ~ ~ ~ ~ a ~ + c ~ ~ ~ a ~ ) ~ - 4 a ~ a ~  det,,];) < 0;  

( e )  mixed mode M 

which is stable if Re h < 0, where h denotes three roots of the cubic equation 

h3 - 2(2a: clll +a: c444) h2 + 4[a:(cill - ciPl) + 2a; a: det,,] h 

+ a ~ [ c 4 4 4 ( c ~ 2 1 - ‘ ~ 1 1 )  + 2c114 ‘44I(‘lll - ‘ Z Z l ) l  = O .  

We show typical bifurcation diagrams in figure 5 for P = 100. Proceeding as in the 
S-L interaction case, we let 

(5.13) 
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FIQURE 6. Nusselt number for two-mode interaction between transverse stationary rolls and 
longitudinal rolls for P = 7 and 8 = 1.69". Solid line denotes the physically realizable Nusselt 
number while the dashed line denotes the number associated with unstable pure transverse 
stationary rolls. 

and define R,,R,,R,,R,, and R, such that AfpT = A & ,  = 0, A:M = 0, A& = 0, 
A:M = A:M+ = 0, and AiPL = 0, respectively, where S:, denotes the inclination angle 
at  the cross-over point at the T-L interaction. We write R, in the form 

R, = b ~ ) / ( S + b ~ ) P - l + b ~ ) ) .  (5.14) 

The numerical values of the coefficients bj") are available from the authors. In the 
neighbourhood of the same P ,  we obtain the local expression for the curve lying 
between the T and L regions in figure 3 as 

S,, w 0.7007 + 66.327P-l. 

We now classify the possible states. IfS > S14, P, is stable for R, < R < R,, whereas 
for R 2 R,, P, is stable while P, and P,, are unstable. If S < S14, on the other hand, 
SW is stable while P, is unstable for €2, < R < R, ; M is stable while P, and SW are 
unstable for R, < R < R,; M is stable while P,, SW, and Mk are unstable for R, < 
R < R,; M is stable while P,, SW, M* and P, are unstable for R, < R < R,; and P, 
is stable while P, and SW are unstable for R, < R. These results are valid for the 
coefficients given in table 3. 

Let us now discuss the physical significance of these bifurcation characteristics. 
They show that the longitudinal roll is always stable if the critical Rayleigh number 
for the L mode is less than that for the S and T modes, i.e. Rt < RE and Rt < RF. For 
these cases, therefore, a pure transverse disturbance can never be achieved. On the 
other hand, if Rt > R:, a transverse stationary roll appears at  first as the pure mode 
Ps. It thereafter bifurcates into a mixed mode M containing initially both the 
transverse roll and the longitudinal one, but finally the pure mode P, becomes the 
only stable state as the Rayleigh number increases further. The former results agree 
with those of Richter (1973) for combined Couette-Poiseuille flow while the latter 
results agree with those of Kropp & Busse (1991a) for differentially heated, 
corotating concentric cylinders. The above is also the case for R,L > RT. The 
transverse standing wave SW appears at first. (Note that the travelling wave P, is 
always unstable with respect to SW.) It then bifurcates into the mixed mode M 



558 K .  Fujimura and R .  E .  Kelly 

2.0 

1.6 
( x 10--5) 

1.2 

0.8 

a4 

0.4 

0 

3 

( x 10-5) 

2 
a3 

1 

0 

1.6 

1.2 

0,8 

( x 10-5) 

a1 

0.4 

0 
85 90 95 100 

( x 103) R 
FIGURE 7. Bifurcation diagram for three-mode interaction among transverse 

transverse travelling waves, and longitudinal rolls. P = 12.5, 8 = 
stationary rolls, 
1.1". 

composed of the standing wave and the longitudinal roll, but finally the pure mode 
P, emerges. Therefore, the longitudinal roll is stable for 6 3 gL and P < P, or 
6 2 6TL and P > P, at fixed P; transition from the transverse disturbance to 
the longitudinal roll via a mixed mode occurs otherwise. We now conclude that the 
longitudinal roll is the disturbance achieved for relatively large values of the 
Rayleigh number. We have already given more precise criteria for the existence and 
stability of each of the equilibrium solutions. 

In figure 6, we depict the Nusselt number as a function of R a t  P = 7 corresponding 
to the bifurcation diagram given in figure 4 ( b ) .  The existence of the mixed mode is 
found to  decrease the heat ;transfer relative to the case of a pure transverse 
disturbance. The reduction in heat transfer is also obtained for P = 100 although we 
do not show the result here. 

We note here that the above analysis does not hold if R:+ RE or R;f (or 
equivalently, 6 % eL or 6 < S;fL for fixed P, respectively). Instead, a transverse 
stationary roll or transverse standing wave can be stable, if it  exists. Unfortunately, 
the weakly nonlinear theory consistent to the cubic order cannot determine the range 
of validity of the present analysis. 
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FIGURE 8. As figure 7 but at P = 12.65, S = 1.06". 

For the bifurcation characteristics on the curve of S-T in figure 3 see Fujimura & 
Mizushima (1991), Kropp & Busse (1991b), or Fujimura (1992). For brevity we do 
not describe these bifurcation characteristics again in the present paper. 

6. Bifurcation for three-mode interaction 
In the neighbourhood of the cross-over region among three modes, S, T, and L, the 

above characteristics partly hold, but some new equilibrium solutions appear which 
will now be described in detail. Let d j ( t )  = a,(t) eiW. Then the coupled amplitude 
equations for three-mode interaction between X, T and L are 

(6.1) I dal/dt = ul(cl + clll a; + c , , ~  ui + c331 ui + c441 a:) = alpl, 

da,/dt = az(cl + cZ2, a," + clll ui + c331 a: + c,,, a:) = a,pz, 

da,/dt = u3(c3 + cl13 uf + clI3 a; + c333 a,: + c443 u,") 3 u3 p 3 ,  

du4/dt = a4(c4 + cIl4 a; + ~ 1 1 4  a: + c~~~ ui + c444 a:) = a4p4,  

where cj = Re Aj for j = 1, 2, 3, 4, and ckkj zz Re A-ekj for 12 = 1, 2, 3, 4. 
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FIUUEE 9. As figure 7 but at P = 12.6, S = 0.92'. 

The coupled amplitude equations possess 11 different equilibrium solutions. They 
are : 

(i) pure mode P,: u: += 0, a: = a: = a: = 0;  
(ii) standing wave SW: 

(iii) pure more P,: 
(iv) pure mode P,: 
(v) transverse mixed mode M,: 

(vi) mixed mode M,: 
(vii) transverse mixed mode M$ : a: =+ 0, a: = u: = 0, and a: + 0 ;  

(viii) mixed mode M& : 
(ix) mixed mode M :  
(x) mixed mode Ms: 

(xi) mixed mode M* : 

a: = a: $; 0, a: = u: = 0;  
ut = u; = ui = 0, ui =+ 0;  
a: = a: = a: = 0,  u: 4 0;  

a: = a; $. 0,  a," =/= 0, and a: = 0 ;  
uf = ui =+ 0, a: = 0, and u: =I= 0; 

u; + 0, a: = a: = 0, and ui + 0; 

ut = ui = 0, u: $; 0, and ut 4 0;  
u," =l= 0, ui = 0, a: =I= 0, and a: =I= 0. 

We list the explicit forms of the above solutions and their stability conditions in 
the Appendix. The bifurcation characteristics have a richer variety in than the cases 
of $5. We demonstrate typical examples of the bifurcation diagrams in figures 7-12, 
Although they are much more complicated than the diagrams €or the two-mode 

u; = ui =/= 0, a: #= 0, and u: =/= 0; 
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FIGURE 10. As figure 7 but at P = 12.45, S = 0.9". 

interactions, each branch of the diagram is qualitatively consistent with the ones in 
figures 4 and 5,  and with figures 1 and 2 of Fujimura (1992) except for mixed modes 
M and M*. 

Besides the S3, and 6,, defined in $5, we introduce 

In the neighbourhood of the cross-over region among the three modes, S, T, and L, 
the local expressions for the curves in figure 3 are 

S,, x -387.28+4822.5PP1, 6,, x 7.5066-80.731P-1, 
6,, z - 0.006 776 2 + 12.585P1. 

We also define R,, for j = 1, 2, 3, 4 and 1 < k < 11 such that 
Here k denotes the label of each equilibrium solution according to the above 
classification. The Rjk are given in the form 

= 0 at R = R. Ik' 

(6.3) Rjk = bf, ')/(&+ b f 7 k )  P-l+ bf, k)). 
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FIGVRE 11. As figure 7 but at P = 12.3, 8 = 0.9". 

The numerical values of b g  I c )  evaluated a t  the cross-over point are available from the 
authors. 

The classification of the stable equilibrium solutions is tabulated in table 5 .  Here 
S,,,,, is the S at which AiMT and A&, vanish simultaneously, and S,,,,,, is the 6 at 
which A& and A& vanish simultaneously. In the neighbourhood of the cross-over 
region, they are 

S35, 46 z 315.13P-1 - 24.366, S15, 410 z - 60.7603P-l+ 5.898 68. 

From the above discussions, we conclude that only the longitudinal roll, P,, is 
achieved in the sector where 6 > S,, and S > S14. Outside this sector, another 
equilibrium solution exists stably for relatively low Rayleigh numbers. But 
eventually the pure longitudinal roll dominates for high Rayleigh numbers. 

7. Discussion and conclusions 
We derived the coupled amplitude equations for two-mode interactions between S 

and L and between T and L, and three-mode interactions among S, T, and L on a 
weakly nonlinear basis for thermal convection in an inclined slot of infinite extent. 
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FIGURE 12. As figure 7 but at P = 12.15, 8 = 0.94'. 

We found that pure longitudinal rolls dominate the dynamics for some range of the 
parameter set in the (P,G)-plane while stable transverse disturbances (Ps or SW) 
bifurcate first into a stable mixed mode and thereafter to stable longitudinal rolls 
which exist in the remaining part of the (P, &)-plane. In  the neighbourhood of the 
cross-over region for the three-mode interaction, the bifurcation characteristics have 
a rich variety. Possible stable solutions correspond to a pure transverse stationary 
roll P,, a standing wave SW, mixed modes M, M,, M,, and Mo, and a pure 
longitudinal roll P,. Any mode composed of a travelling wave propagating in one 
direction is concluded to be unstable. Cubic-order analysis given in the present paper 
is considered to be valid within 10% error judging from figure 5 of Fujimura 6 
Mizushima (1991) in which the validity of the cubic-order analysis is discussed in 
comparison with fully numerical results for the equilibrium solutions. 

It should be remembered that the present results hold only when both of the two 
modes or all of the three modes become critical for nearly the same value of the 
control parameter. Also when R 4 R,L, the longitudinal rolls can develop a wavy 
instability which introduces three-dimensionality into the flow ; see Clever & Busse 
(1977) and Busse & Clever (1992). However, this secondary instability is unrelated 
to the transverse disturbance discussed here (e.g. the wavy instability has an infinite 
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S > 4 4 ,  8 81, P ,  for R > R,, 

for R,, = R,, < R dR,6  
6 > 634,  8 81, 

\pL for R,, G R  

8W for R,, = R,, d R d R,, 
M, for R46 < R <& 
M for R,, < R < R,, = R,,, 
M, for R,, = R,,, d R d R,,, 
P, for R,,, < R 
SW for R,, = R,, d R d R,, 
M, for R35 < R < R 3 ,  
M for B,, d R GR, ,  = R,,, 
M, for R,, = R1,, < R < R,,, 
P ,  for R,,, d H 
P, for R,, < R < R,, = R,, 
M, for R,, = R,, d R d B,, 
M for R,, d R < R,, = R,,, 
M, for R,, = R,,, < R d R,,, 
P, for R,,, < R 

3 834, 6 ' 3,5,,6 

< 835,481 8 ' 4, 

[P, for R,, d R G R,,, 
for R,,, d R d R,,, 

TABLE 5 .  Classification of the stable equilibrium solutions for the three-mode interaction in the 
neighbourhood of (P,R, S) = (12.420013. 97216.060, 1.0065474). 

l? 4 3 ,  6 < 4,,,," 

" s15,410, ' < '34 

critical wavelength), and there is no reason to think that the linear transverse modes 
are important when Rk @ l2: or RZ even if R > R: or RE. The situation when RZ @ 
R,L or RE @ R,4 is possibly quite different. For instance, figure 4 ( b )  indicates that 
three-dimensionality via a mixed mode sets in when R < R t ,  i.e. the component of 
the mixed mode corresponding to the longitudinal rolls sets in subcritically. It is 
therefore conceivable that the mixed mode state can exist even if RE < Rt, although 
a separate analysis is required to determine whether this can actually occur. Such an 
analysis would require calculation of the transverse mode for values of Rayleigh 
number well above critical and would have to consider secondary instability of the 
transverse mode to  disturbances of a type more general than only of the longitudinal 
roll form. 

We depict stability diagrams in the (R, &plane for P = 7 in figure 13. Because of 
the constraints of the cubic-order analysis, we cannot reduce the inclination angle 
to  0'. Our conjecture based on the diagrams for small values of 6 is that R3+m as 
6+0 whereas the curve for R ,  goes to the left for a while, becoming steeper, and 
eventually becoming vertical, and thereafter bends back to  the right. Curves R, and 
R, are considered to merge at  some small value of 6. Of course, R, remains finite for 
6- t  0. 

It is of interest to compare the present results to those of Brand et al. (1991) for 
the case of heated channel flow; cf. their figure 1 showing results in the (R,  Re)-plane. 
For their case, transverse rolls are critical for low values of Re and longitudinal rolls 
are critical for large values of Re. One might be tempted to simply substitute S for 
Re in order to make a comparison but it should be realized that the two cases are 
most similar when 8 = go", not 6 z 0". For instance, in their case, both modes exist 
on a linear basis as Re+O and, for Re > 0, the values of R, for both modes can 
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FIGURE 13. Stability diagram for two-mode interaction between transverse stationary rolls and 
longitudinal rolls at P = 7 and 6 = 1.69'. R,, R,, R,, and R, correspond to R ,  in (5.6). 

coincide for a suitable choice of the aspect ratio. In  the present case, longitudinal 
rolls simply do not exist as S - t O  and, furthermore, it is impossible to have both 
longitudinal and transverse disturbances occurring simultaneously if P < 0.263 897 
(for 6 =I= 90'). It should also be understood that> Brand et al. (1991) used model 
amplitude equations with 'typical ' values chosen for the interaction coefficients, 
whereas the present work uses an asymptotic method valid for sufficiently small 
supercritical values of R and determines the interaction coefficients on the basis of 
the governing equations. Finally, Brand et al. consider a problem with boundary 
conditions imposed over a finite interval in the flow direction whereas we consider the 
horizontally unbounded case. With these caveats. the following comparison is made. 
For a fixed supercritical value of the Rayleigh number, pure transverse rolls exist for 
low values of R e  and pure longitudinal rolls exist a t  high values of Re. Most of the 
numerical results of Brand et al. (1991) are given for a fixed value of Re as R increases, 
which is the manner of presentation used in this paper. In most of their results, the 
Reynolds number is taken to be equal to two, whereas the cross-over value on the 
basis of linear analysis is 1.5. For Re = 2, only longitudinal rolls were found for R up 
to about 1.23R,. Thereafter, transverse rolls appear and begin to displace longitudinal 
rolls, starting from the downstream end. Over most of the length L, either 
longitudinal or transverse modes exist. Although a different form of mixed convection 
than discussed here, this pattern implies that both modes can exist at the same 
values of Re and R .  Our results do not indicate that such a mixed state is possible, 
starting from longitudinal rolls, as R increases. At a Reynolds number of 1.5 and 
R = 1.2RC, only transverse rolls exist but, unfortunately, no information is given at  
values of R closer to critical. No information is given for Re < 1.5 when transverse 
modes become unstable first. Hence, there does not seem to be enough information 
available in the cross-over regime to perform a meaningful comparison. For slightly 
different values for the interaction coefficients, Brand et al. (1991) found that a mixed 
mode state of the type described in this paper is possible for R = 1.165R, and Re = 

2, which is reassuring. The result indicates that more accurate calculation of the 
numerical coefficients for the channel flow case is highly desirable. 

Finally, we note that the bifurcation characteristics obtained by Kropp & Busse 
(1991 a) in corotating concentric cylinders with different temperatures agree with the 
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ones in figure 4 ( h )  of the present paper, a t  least qualitatively. Because their results 
are also based on the actual numerical coefficients of the amplitude equations 
consistent with the governing equations, the bifurcation characteristics obtained in 
the present paper and by Kropp & Busse would seem to be the appropriate ones for 
bifurcations involving a transition via a mixed mode. 

R. E.  K. would like to thank the administrative staff of the Japan Atomic Energy 
Research Institute for arranging his visit to JAERI during the Fall of 1991 while on 
sabbatical leave from UCLA. 

Appendix. Equilibrium solutions for three-mode interaction and their 
stability conditions 
(i) pure mode P, 

u: = -cl/clll, a2 = a3 = a4 = 0,  

which is stable if C)pl/aa: < 0, p z  < 0, p3 < 0, and p ,  < 0;  

(ii) standing wave SW 

a; = a; = -c1/(c111+c221), a3 = a, = 0,  

whose stability condition is given by c1 > 0, ( ~ ~ ~ ~ - c ~ ~ ~ )  ( c l l l + c ~ ~ l )  > 0, p ,  < 0, and 
p ,  < 0 ;  

(iii) pure mode P, 

u1 = u2 = u4 = 0, u; = -c3/c333, 

which is stable if ap,/aai < 0, p ,  < 0, p 2  < 0, and p ,  < 0 ;  

(iv) pure mode P, 
u1 = a2 = u3 = 0,  u: = -c4/c444, 

whose stability condition is given by C)p,/C)a; < 0, pl < 0, p2 < 0, and p ,  < 0;  

(v) transverse mixed mode M, 

a: = a,: = (‘1 ‘333-‘3 ‘331) (c221-c111)  

, a, = 0, 2 - ~ c 3 ~ c ~ 1 1 ~ c ~ 2 1 ~ ~ 2 c 1 c 1 1 3 ~ c 2 2 1 ~ c 1 1 1 ~  

- 2 c 1 1 3  C331(c221 -c111) - c333(C&1- c L 1 )  

which is stable if p ,  < 0 and Re h < 0, where h denotes three roots of the cubic 
equation 

ha - 2(24  clll +a; ~ ~ ~ ~ ) h ~  +4[a;l(c;L1, - ciZ1) + 2 4  a: det,,] h 

~ 8 a ~ a ~ ~ c 3 ~ 3 ~ c ~ 2 1 ~ c ~ ~ l ~ ~ 2 c l l ~ c 3 3 1 ~ c l l ~ ~ c 2 2 1 ~ ~  = O ;  

(Ti) mixed mode M, 

a 2 -  2 -  ( c 1  c 4 4 4 - c 4 c 4 4 1 )  ( ~ 2 2 ~ - - ~ 1 1 1 )  
2 ’  

- a2 - 2c114c441(c221-c111)-c444(c~21-c111) 

- c4(ci11 -‘&I) - 2c1 c114(c221 - ‘111) a3 = 0, 4 = 2 c 1 1 4  C441(c221-  c 1 1 1 )  - C 4 4 4 ( c k 1  - C k )  ’ 
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which is stable if p3 < 0 and Re h < 0, where h denotes three roots of the cubic 
equation 

(vii) transverse mixed mode M$ 

2 - ‘1‘ 13-‘3‘lll , a2 = u4 = 0, d3 - - 2 - ‘3 ‘331 - ‘1 ‘333 

det13 det13 
“1 - , 

whose stability condition is given by pz < 0, p4 -= 0, and 

Re {c,,, a; + c333 a; k [(clll a: + c333 - 4 4  ui det13]i} < 0; 

(viii) mixed mode M$ 

z - ‘1 ‘114 - ‘4 ‘111 , u2 = a3 = 0, u4 - ‘4 ‘441- ‘1 ‘444 a: = 
det14 det14 

The solution is stable if p ,  < 0, p3 < 0, and 

(ix) mixed mode M 

where 
a,” = f / q ,  a2 = a,, a: = g/q,  a: = h/q, 

f = - (‘1 det34 -‘444 ‘331 ‘3 + ‘334 ‘441 ‘3 + ‘443 ‘331 ‘4 - ‘333 ‘441 ‘4) (‘221 -'ill), 

9 = (‘443 ‘4 - ‘444 ‘3) (‘&l - ‘,”,A 

h = - (‘333 ‘4 - c334  ‘3) ( 4 2 1  - ‘?11) 

P = (‘444 ‘333 -‘334 ‘443) (‘Ll -‘L) 

+ 2(c444 ‘113 ‘1 - ‘114 ‘443 ‘1 + ‘114 ‘441 ‘3 -‘113 ‘441 ‘4) (‘221 - 'ill), 

-2(c334c113c1-‘113c331 ‘4-‘114‘333‘1 f c l 1 4  ‘331 ‘3) (‘221-‘111), 

+ 2(c334 ‘113 ‘441 -‘444 ‘113 ‘331 + ‘114 ‘443 ‘331 - ‘114 ‘333 ‘441) (‘221 - ‘111). 

Stability condition is given by Re h < 0 where h denotes four roots of the quartic 
equation 

(x) mixed mode M, 

2 - ‘4’443-‘3‘444 2 - C3‘334-‘4C333 ccl = u2 = 0 ,  a, - > a 4  - 
d e b 3 4  det,, > 
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Re (c333 a: + c444 a: k [(c,,, a; + c444 a:)2 - 4ai a: det,,];) < 0 ; 

(xi) mixed mode M' 

where 
a! = f / q ,  a2 = 0, 4 = S I P ,  4 = hlq, 

f = -[c333(c444c1-c441 c 4 ~ ~ c 3 3 1 ~ c 4 4 3 c 4 ~ c 4 4 4 c 3 ~ ~ c 3 3 4 ~ c 4 4 1  c3-'443c1)1, 

g = c113(c444c1-c441 c4)+clll(c443c4-c444c3)+c114(c441 c3-c443c1), 

= -['333('lll c 4 ~ c 1 1 4 c 1 ~ ~ c 3 3 1 ~ c 1 1 4 c 3 ~ c 1 1 3 c 4 ~ ~ c 3 3 4 ~ c 1 1 3 c 1 ~ c l l l ' ~ ~ I ~  

4 = c333(clllc444-c114 '441) +c113(c441c334-c331 '444) +'443('331 '114-'1ll '334). 

Stability condition is given by Re A < 0 and p$ < 0, where h denotes three roots of 
the cubic equation 

h3 - 2(clll a: + c333 a; + c444 a,") h2 + 4[a! a: det,, +a; a," det,, + a: a: det,,] h 

+ ai[c444(c113 '331-'333 '111) + '334('443 'Ill -'113 '441) + '114('333 '441 - c443 '331)l = O. 
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